
Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 1, 30-37 (2018)

www.astesj.com
Special issue on Advancement in Engineering Technology

ASTES Journal
ISSN: 2415-6698

A Test Code Generation Method for Coding Standard Input/Out-
put with Exception Handling in Java Programming Learning As-
sistant System

Ei Ei Mon1, Nobuo Funabiki*,1, Ryota Kusaka1, Khin Khin Zaw1, Wen-Chung Kao2

1Okayama University, Department of Electrical and Communication Engineering, Okayama, Japan
2National Taiwan Normal University, Department of Electrical Engineering, Taipei, Taiwan

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 30 October, 2017
Accepted: 13 December, 2017
Online: 30 January, 2018

Keywords:
Java programming
JPLAS
Test code
Test case
Automatic generation
JUnit

To advance Java programming educations, we have developed the Java
Programming Learning Assistant System (JPLAS) that provides the code
writing problem. This problem asks a student to write a source code to
satisfy the specification of a given assignment, where the correctness is
verified by running test code on JUnit. For a novice student, a code of
implementing the standard input/output with the exception handling should
be mastered at the early stage as the first step programming for human
interfaces. However, for a teacher, it is not easy to write the test code for
it. In this paper, we propose a test code generation method to generate
the test code using the reference source code for the assignment. In the
evaluation of this proposal, all the students completed the codes using the
generated test codes for exception handling, although the use of exception
handling functions was sometimes insufficient or incorrect.

1 Introduction

Recently, the objected oriented programming language
Java has been widely used in various practical application
systems in societies and industries due to the high reliabil-
ity, portability, and scalability. Java was selected as the
most popular programming language in 2015 [2]. There-
fore, there have been strong demands from industries for
Java programming educations. Correspondingly, a plenty of
universities and professional schools are currently offering
Java programming courses to meet this challenge. A typical
Java programming course consists of grammar instructions
in the class and programming exercises in computer opera-
tions.

To advance Java programming educations, we have de-
veloped the Web-based Java Programming Learning Assis-
tant System (JPLAS) [3]-[7]. JPLAS inspires students by
offering sophisticated learning environments via quick re-
sponses to their answers for self-studies. At the same time,
it supports teachers by reducing loads of evaluating codes.
JPLAS has several types of problems to cover a variety of
students at different learning levels. Among them, the code

writing problem [4] asks a student to write a source code to
satisfy the specification of a given assignment.

The code writing problem is implemented based on the
test-driven development (TDD) method [8], using an open
source framework JUnit [9]. JUnit automatically tests the
codes on the server to verify their correctness using the test
code when they are submitted by students. Thus, students
can repeat the cycle of writing, testing, modifying, and re-
submitting codes by themselves, until they can complete the
correct codes for the assignments.

To register a new assignment for the code writing prob-
lem in JPLAS, a teacher has to prepare a problem statement
describing the code specification, a reference source code,
and a test code using a Web browser. It is noted that the
reference source code is essential to verify the correctness
of the problem statement and the test code. Then, a student
should write a source code for the assignment while refer-
ring the statement and the test code, so that the source code
can be tested by using the given test code on JUnit.

However, teachers at schools are not accustomed to
writing a test code that can run on JUnit. A teacher may
spend much time in struggling to write a test code, and may

*Nobuo Funabiki, Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan, funabiki@okayama-u.ac.jp
This paper is an extension of work originally presented in 31st IEEE International Conference on Advanced Information Networking and Applications
(AINA-2017) [1]

www.astesj.com 30
https://dx.doi.org/10.25046/aj030105

http://www.astesj.com
http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

register an incomplete test code that does not verify some
requirements described in the problem statement correctly.
This incomplete test code must be avoided because it may
produce inappropriate feedback to a student and undermine
confidence to JPLAS. On the other hand, a commercial tool
for generating a test code is usually expensive, and may not
cover a test code that verifies the standard input/output with
exception handling in a source code. The code of imple-
menting the standard input/output with exception handling
should be mastered by novice students at the early stage of
Java programming educations as the first step programming
for human interfaces.

In this paper, we propose a test code generation method
for the code writing problem in JPLAS that generates a test
code using a reference source code to test the standard in-
put/output with exception handling. This method can gen-
erate a test code through the following steps: 1) a test code
template is provided by our proposal, 2) a set of standard
inputs to be tested are made by a teacher, 3) by running the
reference code with each input, the corresponding expected
standard output is extracted correctly, and 4) this pair of the
standard input and the standard output are embedded into
the test code template. By repeating steps 3) and 4) for ev-
ery test standard input, the test code can be completed. To
run the source code using the test code on JUnit, it intro-
duces the classes to handle the standard input/output func-
tions as the memory access functions in [10].

To evaluate the proposed method, first, we applied it
to 97 source codes in Java programming textbooks or Web
sites that contain the standard input/output. It has been
proved that the generated test codes could correctly verify
the source codes except for one code using a random gener-
ator. Then, we generated the test codes for three problems
and asked five students who are currently studying Java pro-
gramming to write the source codes using them. It was
found that they completed the codes that can pass the test
codes, whereas the use of exception handling functions was
sometimes insufficient or incorrect.

The rest of this paper is organized as follows: Sections 2
and 3 introduce the TDD method and JPLAS respectively.
Section 4 presents the test code generation method. Sec-
tion 5 shows the evaluation result. Sections 6 shows related
works. Finally, Section 7 concludes this paper with some
future works.

2 Test-driven Development Method
In this section, we introduce the test-driven development
method along with its features.

2.1 Outline of TDD Method
In the TDD method, the test code should be written before
or while the source code is implemented, so that it can ver-
ify whether the current source code satisfies the required
specifications during its development process. The basic
cycle in the TDD method is as follows:

1) to write the test code to test each required specifica-
tion,

2) to write the source code, and

3) to repeat modifications of the source code until it
passes each test using the test code.

2.2 JUnit
In JPLAS, we adopt JUnit as an open-source Java frame-
work to support the TDD method. JUnit can assist the unit
test of a Java code unit or a class. Because JUnit has been
designed with the Java-user friendly style, its use including
the test code programming is less challenging for Java pro-
grammers. In JUnit, a test is performed by using a given
method whose name starts from assert. This paper adopts
the assertThat method to compare the execution result of
the source code with its expected value.

2.3 Test Code
A test code should be written using libraries in JUnit. Here,
by using the following source code 1 for MyMath class, we
explain how to write a test code. MyMath class returns the
summation of two integer arguments.

source code 1
1 public class Math {
2 public int plus(int a, int b) {
3 return(a + b);
4 }
5 }

Then, the following test code 1 can test the plus method
in the MyMath class.

test code 1
1 import static org.junit.Assert.*;
2 import org.junit.Test;
3 public class MathTest {
4 @Test
5 public void testPlus() {
6 Math ma = new Math();
7 int result = ma.plus(1, 4);
8 assertThat(5, is(result));
9 }

10 }

The names in the test code should be related to those in
the source code so that their correspondence becomes clear:

• The class name is given by the test class name + Test.

• The method name is given by the test + test method
name.

The test code imports JUnit packages containing test meth-
ods at lines 1 and 2, and declares MathTest at line 3. @Test
at line 4 indicates that the succeeding method represents the
test method. Then, it describes the test method.

The test code performs the following functions:

1) to generate an instance for the MyMath class,

2) to call the method in the instance in 1) using the given
arguments,

3) to compare the result with its expected value for the
arguments in 2) using the assertThat method, where
the first argument represents the expected value and
the second one does the output data from the method
in the source code under test.

www.astesj.com 31

http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

2.4 Features in TDD Method
In the TDD method, the following features can be observed:

1. The test code can represent the specifications of the
source code, because it must describe the function
tested in the source code.

2. The test process for a source code becomes efficient,
because each function can be tested individually.

3. The refactoring process of a source code becomes ef-
fective, because the modified code can be tested in-
stantly.

Therefore, to study the TDD method and writing a test code
is useful even for students, where the test code is equivalent
to the source code specification. Besides, students should
experience the software test that has become important in
software companies.

3 Java Programming Learning Assis-
tant System

In this section, we review the outline of our Java program-
ming learning system JPLAS.

3.1 Server Platform
JPLAS is implemented as a Web application using JSP/-
Java. For the server platform, it adopts the operating system
Linux, the Web server Apache, the application server Tom-
cat, and the database system MySQL, as shown in Figure 1.
For the browser, it assumes the use of Firefox with HTML,
CSS, and JavaScript.

JPLAS
(JSP/Java)

Tomcat
(Web server)

MySQL
(Database)

Linux (OS)

Figure 1: JPLAS server platform.

3.2 Teacher Service Functions
JPLAS has user functions both for teachers and stu-
dents. Teacher service functions include the registration of
courses, the registration and management of assignments,
and the verification of source codes that are submitted by
students. To register a new assignment, a teacher needs to
input an assignment title, a problem statement, a reference
(model) source code, and a test code. After the registration,
they are disclosed to the students except for the source code.
Note that the test code must be able to test the model code
correctly. Using the correspondence between a source code
and a test code in Section 2.3, it is possible to automatically
generate a template for the test code from the source code.
Then, a teacher merely needs to specify concrete values for
the arguments in each test method to complete the test code.

To evaluate the difficulty of assignments and the com-
prehension of students, a teacher can refer to the number of
submissions for code testing from each student. If a teacher
finds an assignment with plenty of submissions, it can be
considered as quite difficult for the students, and should be
changed to an easier one. If a teacher finds a student who
submitted codes in many times whereas other students did
in a few times, this student may require additional assis-
tance from the teacher.

3.3 Student Service Functions
Student service functions include the view of the assign-
ments and the submission of source codes for the assign-
ments. A student should write a source code for an assign-
ment by referring the problem statement and the test code.
It is requested to use the class/method names, the types, and
the argument setting specified in the test code. JPLAS im-
plements a Web-based source code editor called CodePress
[11] so that a student can write codes on a Web browser. All
submitted source codes will be stored in the database on the
server as a reference for students.

4 Proposal of Test Code Generation
Method

In this section, we propose the test code generation method
for coding the standard input/output with exception han-
dling.

4.1 Scope of Source Code under Test
At the early stage of the Java programming education, the
responsibility of a student is to master how to write a source
code that contains the standard input/output with exception
handling. Thus, a teacher in a Java programming course
should prepare a considerable number of assignments for
writing source codes containing them, where many Java
programming textbooks offer such assignments for novice
students.

The source code in this paper must contain the functions
for the standard input/output and the exception handling.
Then, if the proper data is given to the code from the stan-
dard input, it must handle it correctly and outputs the mes-
sage specified in the assignment to the standard output. On
the other hand, if the improper data is given, it must handle
it using the exception handling command without abortion
and outputs the corresponding message.

4.2 Requirements in Test Code
Subsequently, the test code must satisfy the following re-
quirements:

1. The input data from the standard input (keyboard)
must be described in the test code to test the standard
input in the source code.

2. The output data to the standard output (console) must
be received by the test code to test the standard output
in the source code.

www.astesj.com 32

http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

3. The input data must be elaborated in the test code for
the standard input.

4. The input data in the test code should cover any pos-
sible one for the standard input, including the proper
and improper ones.

5. The expected output data for each input data must be
narrated in the test code correctly.

4.3 Solutions for Requirements
Test code generation method adopts following functions
and commands to solve the above mentioned require-
ments by referring the test code implementation in [10]:

• To describe the standard input data to the source code,
the Inputln method in StandardInputSnatcher class is
adopted in the test code. It is noted that Standard-
InputSnatcher class is extended from InputStream
class.

• To receive the standard output data from the source
code, the readLine method in StandardOutput-
Snatcher class is adopted in the test code. It is noted
that StandardOutputSnatcher class is extended from
PrintStream class.

• Any possible standard input data is prepared by a
teacher beforehand. It is used in the argument of In-
putln.

• To obtain the expected standard output data from the
code for each input data, the reference source code is
executed with this input data.

• Each pair of the standard input and output data is em-
bedded into the test code.

4.4 Conditions of Source Code
Currently, to avoid the complexity, the proposed method
confines the applicable source code that satisfies the follow-
ing conditions:

1. it has the main method only.

2. it contains the standard input function.

3. it contains the standard output function for handling
the proper input.

4. it contains the standard output function for handling
the exception.

It is noted that a source code containing multiple standard
input/output functions can be handled by increasing the
number of Inputln or assertThat in the test code accord-
ingly. Besides, if a code does not have the main method, it
can be handled by describing the proper statements to ex-
ecute the method for the standard input/output in the test
code.

An example source code in this scope is as follows:

source code 2

1 import java.util.Scanner;
2 public class Sample {
3 public static void main(String args[]){
4 int number;
5 Scanner scan = new Scanner(System.in);
6 try{
7 System.out.print("Enter an integer");
8 String actual = scan.nextLine();
9 number = Integer.parseInt(actual);

10 System.out.println(number +": is input
number");

11 } catch(NumberFormatException e) {
12 System.out.print("

NumberFormatException occurs!");
13 }
14 }
15 }

source 2 accepts an integer data from a console and out-
puts a message with this data on a display. In this source
code, 1) it has only the main method at line 3, 2) scan ob-
ject of Scanner class is defined at line 5 as the standard in-
put function, 3) System.out.println is called at line 10 as the
standard output function for handling the proper input, and
4) System.out.println is called at line 12 as the standard out-
put function for handling the exception.

4.5 Test Code Template

Then, the proposed method provides the test code template
containing the required functions for the above mentioned
source code. The following code describes the core part
of the test code template starting from @Test. In advance,
several import statements to use related libraries, and the in-
stance generations for the StandardInputSnatcher and Stan-
dardOutputSnatcher classes are necessary. Besides, the
definitions of these classes are also required to complete the
test code template.

In this template, in.Inputln at line 29 gives the standard
input data to the source code, where in is an instance of
StandardInputSnatcher class. The statements at lines 30-37
run the source code and read the standard output data for
this input data, where out is an instance of StandardOutput-
Snatcher class. expected at line 38 represents the expected
output data of the source code. The blanks " " at lines 29
and 38 should be filled by the standard input and output
data. assertThat at line 39 compares the expected data with
the output data of the code. The whole statements at lines
25-40 should be prepared for each input data.

test code template

1 import static org.hamcrest.CoreMatchers.is;
2 import static org.junit.Assert.assertThat;
3 import static org.junit.Assert.*;
4 import java.io.InputStream;
5 import org.junit.Before;
6 import org.junit.Test;
7 import Snatcher.StandardOutputSnatcher;
8 import java.io.BufferedReader;
9 import java.io.ByteArrayOutputStream;

10 import java.io.IOException;
11 import java.io.InputStream;
12 import java.io.PrintStream;
13 import java.io.StringReader;
14
15 public class TemplateTest {
16 private StandardInputSnatcher in = new

StandardInputSnatcher();

www.astesj.com 33

http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

17 private StandardOutputSnatcher out = new
StandardOutputSnatcher();

18
19 @Before
20 public void setUp() {
21 System.setIn(in);
22 System.setOut(out);
23 }
24
25 @Test
26 public void test1() throws Exception {
27 StringBuffer bf = new StringBuffer();
28 String actual,line,expected;
29 in.Inputln(""); // standard input
30 Sample.main(new String[0]);
31 System.out.flush();
32 while((line = out.readLine()) != null) {
33 if (bf.length() > 0)
34 bf.append("\n");
35 bf.append(line);
36 }
37 actual = bf.toString();
38 expected = ""; // expected standard output
39 assertThat(actual,is(expected));
40 }
41 }

4.6 Test Code Generation Procedure
The test code generation procedure using the test code tem-
plate in the proposed method is as follows:

1) A teacher prepares the reference source code for the
assignment.

2) He/she prepares a set of possible standard input data
to the source code.

3) He/she runs the source code by using each standard
input data and observes the corresponding standard
output data.

4) He/she embeds the standard input data into " " at line
29 and the observed standard output data into " " at
line 38 in the test code template.

As the possible standard input data in step 2), the fol-
lowing five data types should be considered. Then, the
teacher needs to select one value for each data type, which
is used in step 3).

• positive integer: 5

• negative integer: -14

• zero integer: 0

• floating-point number: 0.5

• one-byte character: abc

• two-byte character: A B C

4.7 Generated Test Code Example
This subsection introduces an example of the test code gen-
erated by applying the proposed method to source code 2.
The file name for the generated test code is given as Sam-
pleTest.java. The following test code 2 shows a part of the
test code.

test code2

1
2
3 @Test
4 public void test1() throws Exception {
5 StringBuffer bf = new StringBuffer();
6 String actual,line,expected;
7 in.Inputln("5"); // proper standard input data
8 Sample.main(new String[0]);
9 System.out.flush();

10 while((line = out.readLine()) != null) {
11 if (bf.length() > 0)
12 bf.append("\n");
13 bf.append(line);
14 }
15 actual = bf.toString();
16 expected = "Enter an integer" +
17 "5: is input number";
18 assertThat(actual,is(expected));
19 }
20
21 @Test
22 public void test2() throws Exception {
23 StringBuffer bf = new StringBuffer();
24 String actual,line,expected;
25 in.Inputln("abc"); // improper standard input

data
26 Sample.main(new String[0]);
27 System.out.flush();
28 while((line = out.readLine()) != null) {
29 if (bf.length() > 0)
30 bf.append("\n");
31 bf.append(line);
32 }
33 actual = bf.toString();
34 expected = "Enter an integer" + "

NumberFormatException occurs!";
35 assertThat(actual,is(expected));
36 }
37

5 Evaluation

In this section, we evaluate the effectiveness of the pro-
posed test code generation method in terms of generating
test codes from existing source codes and writing source
codes using the test codes by students.

5.1 Test Code Generation Results

First, we evaluate the method in generating test codes from
source codes. For this purpose, 97 source codes were col-
lected from Java programming textbooks or Web sites [12]-
[16], and the test codes were generated by applying the pro-
posed method. It is noted that some codes in [15] were
modified to using the standard input/output through the con-
sole instead of using the dialog box. Then, the correct-
ness of each test code was examined by testing the original
source code. It was found that our method generated the
test codes that can pass original codes correctly except for
one source code, which outputs a random number generated
in the code. Thus, the effectiveness of the proposed method
was confirmed.

The following source code 3 shows an example source
code in [12] where the method successfully generates the
test code shown in test code 3. It is noted that try - catch is
used here instead of throws in the original source code.

www.astesj.com 34

http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

source code 3

1 import java.io.*;
2 class Sample3 {
3 public static void main(String[] args) throws

IOException {
4 try {
5 System.out.println("Enter two integers

");
6 BufferedReader br =
7 new BufferedReader(new

InputStreamReader(System.in));
8 String str1 = br.readLine();
9 String str2 = br.readLine();

10 int num1 = Integer.parseInt(str1);
11 int num2 = Integer.parseInt(str2);
12 System.out.println("The sum is " + (

num1+num2) + ".");
13 } catch(NumberFormatException e) {
14 System.out.print("

NumberFormatException occurs!");
15 }
16 }
17 }

test code3

1
2
3 @Test
4 public void test1() throws Exception {
5 StringBuffer bf = new StringBuffer();
6 String actual,line,expected;
7 in.Inputln("2"); in.Inputln("7");// proper

standard input data
8 Sample.main(new String[0]);
9 System.out.flush();

10 while((line = out.readLine()) != null) {
11 if (bf.length() > 0)
12 bf.append("\n");
13 bf.append(line);
14 }
15 actual = bf.toString();
16 expected = "Enter two integers" +"The

sum is 9.";
17 assertThat(actual,is(expected));
18 }
19
20 @Test
21 public void test2() throws Exception {
22 StringBuffer bf = new StringBuffer();
23 String actual,line,expected;
24 in.Inputln("0.5"); in.Inputln("-3");//

improper standard input data
25 Sample.main(new String[0]);
26 System.out.flush();
27 while((line = out.readLine()) != null) {
28 if (bf.length() > 0)
29 bf.append("\n");
30 bf.append(line);
31 }
32 actual = bf.toString();
33 expected = "Enter two integers" + "

NumberFormatException occurs!";
34 assertThat(actual,is(expected));
35 }
36

5.2 Source Code Writing Results

Next, we evaluate the proposed method in writing source
codes with generated test codes by five students who are
currently studying Java programming and have same tech-
nical levels. For this purpose, we prepared the following
three problems, where all the students completed the source
codes that pass the test codes for any problem.

5.2.1 Problem #1

In problem #1, the code accepts an integer data from a con-
sole, and outputs a message with this data to a console,
where source 2 is the reference source code and test 2 is
the test code. The source code from a student is expected
to use NumberFormatException to check the input data for-
mat. Then, three students use this class for the exception
handling, and one uses Exception. However, one student
does not use it where he implements the data format check-
ing function.

5.2.2 Problem #2

In problem #2, the code accepts an integer index from a con-
sole, and outputs the indexed data from the data array. The
student code is expected to use ArrayIndexOutofBoundEx-
ception to check the range of the index. Then, only one stu-
dent uses this class. The other students implement the index
checking function in the codes. Two students use IOExcep-
tion, and two students do not use any class for the exception
handling. No student use NumberFormatException to check
the input data format, although the class was requested in
problem #1. Unfortunately, many students cannot integrate
the knowledge that has been studied sequentially.

5.2.3 Problem #3

In problem #3, the code accepts a file path from a con-
sole, and outputs the string at the first line in the file. The
student code is expected to use FileNotFoundException or
IOException to check the file path. Then, three students use
FileNotFoundException, one uses Exception, and one uses
IOException.

5.2.4 Summary of Student Applications

This simple experiment of our proposal shows that the stu-
dents can generally complete source codes using standard
input/output with exception handling that can pass the gen-
erated test codes. However, their use of the class for the
exception handling is sometimes insufficient or incorrect.
It has been observed that these students are not experts,
which causes the difference in their source codes, although
they have enough programming skills. To let them under-
stand the correct use, it is necessary to improve the proposed
method.

6 Related Works
In this section, we introduce some related works to this pa-
per.

In [17], Fu presented a static exception-flow analy-
sis that computes chains of semantically-related exception-
flow links and reports entire exception propagation paths.
These chains can be used, 1) to show the error handling ar-
chitecture of a system, 2) to assess the vulnerability of a
single component and the whole system, 3) to support the
better testing of an error recovery code, and 4) to facilitate
the tracing of the root cause of a logged problem.

www.astesj.com 35

http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

In [18], Rashkovits showed that most of college stu-
dents understand the concept of Java exception handling
at the basic level, and the majority of them have difficulty
in understanding advanced properties such as use of multi-
ple exceptions, flow of control in the context of exceptions,
handling exceptions further up the calling chain, catching
and handling hierarchically related exceptions, and overrid-
ing methods that throw exceptions. They also provided a
tutorial of exception handling, and quoted that exception
handling is perceived as a relatively difficult task by novice
programmers. In future works, we will consider to adopt
their contributions.

In [19], Júnior presented a practical approach to pre-
serve the exception policy in a system by automatically
checking exception handling design rules. They are
checked through executions of JUnit test cases with dy-
namic mock objects that are generated by the supporting
tool. Four versions of Mobile Media in SPL were used to
evaluate whether the policy was preserved or not. The re-
sults show that the approach can effectively detect viola-
tions on the policy of software product lines.

In [20], Nakshatri presented an empirical study of ex-
ception handling patterns in Java projects. It forces develop-
ers to think in sophisticated ways to handle the exceptions.
In this study, empirical data was extracted from projects
by analyzing data in GitHub and SourceForge repositories.
The results were compared with recommendations for best
practices in exception handling presented by Bloch [21]. It
has been observed that most programmers ignore checking
exceptions, and higher classes in the exception class hierar-
chy are more frequently used.

In [22], Brunet presented the concept of design test that
automatically checks whether the code conforms to the spe-
cific design rule by using a test-like program. To support
it, DesignWizard (DW) had been developed with a fully-
fledged API that allows writing design tests for Java codes
using JUnit. The proposal was applied to three software
products in their group and student projects in the under-
graduate course. The results showed that this approach was
suitable to check conformance between the design rules and
the code implementation. Moreover, it has been observed
that both designers and programmers appreciated the de-
sign tests as executable documents that can be easily kept
up to date.

In [23], Akahane presented a Web-based automatic
scoring system for Java programming assignments to reduce
loads of teachers in verifying a huge number of codes and
in giving feedbacks to students. The system receives Java
application programs submitted by students, and immedi-
ately returns the results of JUnit tests where the Java Reflect
API is adopted for testing private classes and methods that
have been commonly found in introductory courses. The
regular expression is used to compare the output texts of
each student program and those of the reference program.
Through use in an actual course in their university, it was
confirmed that this system was very helpful for students to
improve programming skills by correcting mistakes in their
programs and repeating their submissions.

In [24], Kitaya presented a Web-based scoring system
of programming assignments to students, which is similar
to JPLAS. Their test consists of compiler check, JUnit test,

and result test. The result test verifies the correctness of a
student code composed of only the main method that read-
s/writes data from/to the standard input/output devices, by
comparing the results of this code and of the reference code.
However, the method has several disadvantages from our
proposal: 1) it is only applicable to a code composed of
the main method with the standard input/output, 2) it uses
other programs to use the redirection for handling the stan-
dard input/output, and 3) it needs several input files to check
the correctness for different input data. On the other hand,
our method is applicable to a code containing other than the
main method, it needs only JUnit with a test code, and all
the input data can be described in a single test code.

7 Conclusion

In this paper, we proposed the test code generation method
for the code writing problem in JPLAS that requires im-
plementing a Java source code containing the standard in-
put/output with exception handling. To access the standard
input/output from the test code on JUnit, the test code tem-
plate is first prepared with the input/output snatcher classes.
Then, the test code is completed by embedding the input
and output extracted by running the reference source code
into the template. This proposal is helpful in reducing the
teacher load in writing the test code for the programming as-
signment that requires the standard input/output with excep-
tion handling, which is common for novice students. The
effectiveness is evaluated through applying the method to
97 source codes in Java programming text books or Web
sites, and asking five students to write source codes using
the generated test codes for three problems. In future works,
we will extend the proposed method to handle other in-
put/output functions, other methods than the main method,
and improve the readability of the generated test code to
make it easier for novice students.

References
[1] N. Funabiki, R. Kusaka, N. Ishihara, and W.-C. Kao, ”A proposal

of test code generation tool for Java programming learning assis-
tant system,” Proc. IEEE Int. Conf. Adv. Inform. Netw. Appl., pp.
51-56, March 2017.

[2] S. Cass, The 2015 top ten programming languages,
http://spectrum.ieee.org/computing/soft-

ware/the-2015-top-ten-programminglangua-

ges/?utm_so.

[3] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, ”A
graph-based blank element selection algorithm for fill-in-blank
problems in Java programming learning assistant system”, IAENG
Int. J. Comput. Science, vol. 44, no. 2, pp. 247-260, May 2017.

[4] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.
Amano, ”A Java programming learning assistant system using test-
driven development method”, IAENG Int. J. Comput. Science,
vol.40, no.1, pp. 38-46, Feb. 2013.

[5] K. K. Zaw, N. Funabiki, and W.-C. Kao, ”A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system”, Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep.
2015.

www.astesj.com 36

http://spectrum.ieee.org/computing/soft-
ware/the-2015-top-ten-programming langua-
ges/?utm_so.
http://www.astesj.com

E. E. Mon et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 30-37 (2018)

[6] N. Ishihara, N. Funabiki, and W.-C. Kao, ”A proposal of statement
fill-in-blank problem using program dependence graph in Java pro-
gramming learning assistant system”, Inf. Eng. Express, vol. 1, no.
3, pp. 19-28, Sep. 2015.

[7] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, ”A soft-
ware architecture for Java programming learning assistant system”,
Int. J. Comput. Soft. Eng., vol. 2, no. 1, Sep. 2017.

[8] K. Beck, Test-driven development: by example, Addison-Wesley,
2002.

[9] JUnit, http://www.junit.org/.

[10] Diary of kencoba, http://d.hatena.ne.jp/kencoba/

20120831/ 1346398388.

[11] CodePress, http://codepress.sourceforge.net.

[12] M. Takahashi, Easy Java, 5th Ed., Soft Bank Creative, 2013.

[13] H. Yuuki, Java programming lessen, 3rd Ed., Soft Bank Creative,
2012.

[14] Y. D. Liang, Introduction to Java programming, 9th Ed., Pearson
Education, 2014.

[15] Java programming seminar, http://java.it-manual.com/
start/about.html.

[16] Kita Soft Koubo, http://kitako.tokyo/lib/Ja-

vaExercise.aspx.

[17] C. Fu and B. G. Ryder, ”Exception-chain analysis: revealing ex-
ception handling architecture in Java server applications”, Proc. Int.
Conf. Soft. Eng., pp. 230-239, May 2007.

[18] R. Rashkovits and I. Lavy, ”Students’ understanding of advanced
properties of Java exceptions”, J. Inform. Tech. Edu., vol. 11, pp.
327-352, 2012.

[19] R. J. S. Júnior and R. Coelho, ”Preserving the exception han-
dling design rules in software product line context: a practical ap-
proach”, Proc. Latin-American Symp. Depend. Comp. Work., pp.
9-16, 2011.

[20] S. Nakshatri, M. Hegde, and S. Thandra ”Analysis of exception
handling patterns in Java projects: an empirical study”, Proc.
IEEE/ACM Work. Conf. Mining Soft. Rep., pp. 500-503, May
2016.

[21] J. Bloch, Effective Java, 2nd Ed., Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2008.

[22] J. Brunet, D. Guerrero, and J. Figueredo, ”Design tests: an approach
to programmatically check your code against design rules”, Proc.
Int. Conf. Soft. Eng., pp. 255-258, May 2009.

[23] Y. Akahane, H. Kitaya, and U. Inoue, ”Design and evaluation of au-
tomated Scoring Java programming assignments” Proc. Int. Conf.
Soft. Eng., Art. Intel., Net. Para./Dist. Comp., pp.1-6, 2015.

[24] H. Kitaya and U. Inoue, ”An online automated scoring system for
Java programming assignments”, Int. J. Inform. Edu. Tech., vol. 6,
no. 4, pp. 275-279, April 2016.

www.astesj.com 37

http://www.junit.org/.
http://d.hatena.ne.jp/kencoba/20120831/
http://d.hatena.ne.jp/kencoba/20120831/
1346398388.
http://codepress.sourceforge.net.
http://java.it-manual.com/start/about.html.
http://java.it-manual.com/start/about.html.
http://kitako.tokyo/lib/Ja-
vaExercise.aspx.
http://www.astesj.com

	 Introduction
	Test-driven Development Method
	Outline of TDD Method
	JUnit
	Test Code
	Features in TDD Method

	Java Programming Learning Assistant System
	Server Platform
	Teacher Service Functions
	Student Service Functions

	Proposal of Test Code Generation Method
	Scope of Source Code under Test
	Requirements in Test Code
	Solutions for Requirements
	Conditions of Source Code
	Test Code Template
	Test Code Generation Procedure
	Generated Test Code Example

	Evaluation
	Test Code Generation Results
	Source Code Writing Results
	Problem #1
	Problem #2
	Problem #3
	Summary of Student Applications

	Related Works
	Conclusion

